Imaging spectroscopy- and lidar-derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics

نویسندگان

  • A. S. Antonarakis
  • J. W. Munger
  • P. R. Moorcroft
چکیده

The composition and structure of vegetation are key attributes of ecosystems, affecting their current and future carbon, water, and energy fluxes. Information on these attributes has traditionally come from ground-based inventories of the plant canopy within small sample plots. Here we show how imaging spectrometry and waveform lidar can be used to provide spatially comprehensive estimates of forest canopy composition and structure that can improve the accuracy of the carbon flux predictions of a size-structured terrestrial biosphere model, reducing its root-mean-square errors from 85%–104% to 37%–57%. The improvements are qualitatively and quantitatively similar to those obtained from simulations initialized with ground measurements and approximately double the estimated rate of ecosystem carbon uptake as compared to a potential vegetation simulation. These results suggest that terrestrial biosphere model simulations can utilize modern remote-sensing data on vegetation composition and structure to improve their predictions of the current and near-term future functioning of the terrestrial biosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate ...

متن کامل

Using Airborne Lidar for the Assessment of Canopy Structure Influences on Co2 Fluxes

Fluxes of carbon dioxide (CO2), water, and energy measured using the eddy covariance method (EC) will vary spatially and temporally within the catchment area of the EC system, especially if parts of the forest are structurally heterogeneous. This is important because within site vegetation structural and topographic heterogeneity may tip the balance between an ecosystem being a net sink or sour...

متن کامل

Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

BACKGROUND Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography prese...

متن کامل

Studying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)

Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...

متن کامل

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATION AND REMOTE SENSING manuscript ID

Large uncertainties in terrestrial carbon stocks and sequestration predictions result from insufficient regional data characterizing forest structure. This study uses satellite waveform lidar from ICESat to estimate regional forest structure in central New England, where each lidar waveform estimates fine-scale forest heterogeneity. ICESat is a global sampling satellite, but does not provide wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014